Assembly of non-contractile dorsal stress fibers requires α-actinin-1 and Rac1 in migrating and spreading cells.

نویسندگان

  • Bianca Kovac
  • Jessica L Teo
  • Tomi P Mäkelä
  • Tea Vallenius
چکیده

Cell migration and spreading is driven by actin polymerization and actin stress fibers. Actin stress fibers are considered to contain α-actinin crosslinkers and nonmuscle myosin II motors. Although several actin stress fiber subtypes have been identified in migrating and spreading cells, the degree of molecular diversity of their composition and the signaling pathways regulating fiber subtypes remain largely uncharacterized. In the present study we identify that dorsal stress fiber assembly requires α-actinin-1. Loss of dorsal stress fibers in α-actinin-1-depleted cells results in defective maturation of leading edge focal adhesions. This is accompanied by a delay in early cell spreading and slower cell migration without noticeable alterations in myosin light chain phosphorylation. In agreement with the unaltered myosin II activity, dorsal stress fiber trunks lack myosin II and are resistant to myosin II ATPase inhibition. Furthermore, the non-contractility of dorsal stress fibers is supported by the finding that Rac1 induces dorsal stress fiber assembly whereas contractile ventral stress fibers are induced by RhoA. Loss of dorsal stress fibers either by depleting α-actinin-1 or Rac1 results in a β-actin accumulation at the leading edge in migrating and spreading cells. These findings molecularly specify dorsal stress fibers from other actin stress fiber subtypes. Furthermore, we propose that non-contractile dorsal stress fibers promote cell migration and early cell spreading through Rac1-induced actin polymerization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly of non-contractile dorsal stress fibers requires a-actinin-1 and Rac1 in migrating and spreading cells

Cell migration and spreading is driven by actin polymerization and actin stress fibers. Actin stress fibers are considered to contain aactinin crosslinkers and nonmuscle myosin II motors. Although several actin stress fiber subtypes have been identified in migrating and spreading cells, the degree of molecular diversity of their composition and the signaling pathways regulating fiber subtypes r...

متن کامل

Palladin promotes assembly of non-contractile dorsal stress fibers through VASP recruitment.

Stress fibers are major contractile actin structures in non-muscle cells where they have an important role in adhesion, morphogenesis and mechanotransduction. Palladin is a multidomain protein, which associates with stress fibers in a variety of cell types. However, the exact role of palladin in stress fiber assembly and maintenance has remained obscure, and whether it functions as an actin fil...

متن کامل

Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly

Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion duri...

متن کامل

Interaction of fluorescently-labeled contractile proteins with the cytoskeleton in cell models

To determine if a living cell is necessary for the incorporation of actin, alpha-actinin, and tropomyosin into the cytoskeleton, we have exposed cell models to fluorescently labeled contractile proteins. In this in vitro system, lissamine rhodamine-labeled actin bound to attachment plaques, ruffles, cleavage furrows and stress fibers, and the binding could not be blocked by prior exposure to un...

متن کامل

Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism

The Rho family GTPases Cdc42, Rac1 and RhoA control many of the changes in the actin cytoskeleton that are triggered when growth factor receptors and integrins bind their ligands [1] [2]. Rac1 and Cdc42 stimulate the formation of protrusive structures such as membrane ruffles, lamellipodia and filopodia. RhoA regulates contractility and assembly of actin stress fibers and focal adhesions. Altho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 126 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013